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I. RECAP OF HÜCKEL THEORY

We begin with a brief recap of Hückel theory, taking initially the practical viewpoint of

‘how-to-do’ calculations, rather than the ‘meaning’ of the subject. We will later return to

this latter aspect. This approach, I hope, will have the advantage of getting you started on

familiar ground. Actually, Hückel theory is an archetype of more general molecular-orbital

theory, and even more widely, of many quantum mechanical principles. Therefore, a good

practical grasp of it proves invaluable in many areas of chemistry.

Let us start with the benzene molecule, the Hückel theory of which is very instructive. The

steps are as follows. To begin with, we suppose we can treat separately the π-electrons from

the σ-electrons. For planar molecules such as benzene, this assumption is strictly justifiable

on symmetry grounds, but we will nevertheless assume it to be true for non-planar molecules

as well. Next, we set up a “basis” of 6 pz (or, as we shall sometimes interchangeably refer to

them, as pπ) atomic orbitals, one for each carbon in the appropriate geometry. We will label

these atomic orbitals φ1, ...,φ6.

φ1

φ2 φ3

φ4

φ5φ6

FIG. 1: The pπ atomic orbitals of benzene.

Our aim is to discover the linear combinations of these atomic orbitals which are somehow

‘optimal’. To do this, we assume that there is a Hamiltonian operator, Ĥ (which we will often

write simply as H), whose function it is to determine the energy of an electron, and roughly

speaking, can be decomposed into three terms: the kinetic energy of the electron, the potential

energy of the electron in the nuclear framework, and the potential energy of the electron due

1



to the average distribution of all other electrons. The precise mathematical form for this

effective Hamiltonian it is rather complicated (we will deal with it in C6); for the moment,

let us simply assume it exists, with matrix elements:

Hrs = 〈φr|H|φs〉 (1)

and not concern ourselves with the actual evaluation of these matrix elements (which is

generally speaking difficult, and except in a few cases must be done on the computer). One

of the beauties of Hückel theory is to assume a simple form for this Hamiltonian - and it

turns out that many of the general conclusions of Hückel theory are independent of the

actual numerical values of this matrix.

In addition to the Hamiltonian matrix, there is also an overlap matrix, which measures

the spatial overlap of the orbitals among each other:

Srs = 〈φr|φs〉 (2)

If our orbitals are normalised, then Srr = 1, and furthermore, if the orbitals are orthogonal

to each other, then Srs = 0 for r #= s. To begin with, we will not make either assumption.

What we seek are linear combinations of these AO’s which are stationary solutions of the

Hamiltonian. These special linear combinations are the molecular orbitals. We can think

of them as standing “waves” whose (square) amplitudes given the probability of finding an

electron at that site. Among these waves, for example, is a solution which minimises the

energy of the Hamiltonian. We denote an MO with the symbol ψ, and write it as a linear

combination of AO’s whose coefficients cr have to be determined:

ψ =
∑

r

crφr (3)

Consider the energy of this MO:

ε =
〈ψ|H|ψ〉
〈ψ|ψ〉

(4)

Expanding the sum, we get:

ε =

∑

rs c∗rcs〈φr|H|φs〉
∑

rs c∗rcs〈φr|φs〉
(5)

In almost all of the applications we will meet, the coefficients cr will be real numbers, and it

is not necessary to worry about the complex conjugation. In this case, the expression reduces
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to:

ε =

∑

rs crcsHrs
∑

rs crcsSrs
(6)

Before we continue, let us briefly mention a word about the summation notation. The

double sum denoted above means:

∑

rs

≡
N
∑

r=1

N
∑

s=1

(7)

where N is the number of sites in the molecule. Now, it is usually convenient to split the

sum up into two parts, terms for which r = s and terms for which r #= s. Thus, assuming a

general summand ars:

∑

rs

ars =
N
∑

r=1

arr +
N
∑

r=1

N
∑

s "=r

ars (8)

The third step is that, in all our applications, the summand (ars) is symmetric:

ars = asr (9)

In this case, the remaining double sum can be further simplified:

∑

rs

ars =
∑

r

arr + 2
N
∑

r=1

N
∑

s>r

ars (10)

=
∑

r

arr + 2
N−1
∑

r=1

N
∑

s=r+1

ars (11)

which we compactly write as:

∑

rs

ars =
∑

r

arr + 2
∑

s>r

ars. (12)

The secular equations

We seek the coefficients cr such that the energy ε is optimised in the sense that the

first-derivative wrt cr all vanish, i.e.

∂ε

∂cr
= 0 (13)

This is a fairly straightforward exercise in partial differentiation with the following fairly

simple result. The cr which satisfy the above are given by the matrix equation:

∑

r

(Hsr − εSsr)cr = 0 (14)
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Written in matrix form we have:










H11 − εS11 H12 − εS12 .... H1N − εS1N

H21 − εS21 H22 − εS22 .... H2N − εS2N

.. .. .... ...

HN1 − εSN1 HN2 − εSN2 .... HNN − εSNN





















c1

c2

.

cN











= 0 (15)

Compactly put, we have:

(H − εS)c = 0 (16)

As you know, the non-trivial solutions to this equation must satisfy:

det(H − εS) = 0 (17)

Or written out in full glory:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H11 − εS11 H12 − εS12 .... H1N − εS1N

H21 − εS21 H22 − εS22 .... H2N − εS2N

.. .. .... ...

HN1 − εSN1 HN2 − εSN2 .... HNN − εSNN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (18)

where N is the number of basis functions. It looks awful and we will look for simplifications

in a moment. However, there is one general result which we can immediately deduce. Since

what we face is an N × N determinant, should we expand it we would get an N -th order

polynomial in ε. Since such polynomials have precisely N solutions, we can deduce that

there will be N molecular orbitals, or sets of coefficients, c(i)
r which are optimal in the sense

of Eq.(13), with associated energies εi.

So here is the first remarkable result. There are as many sets of solutions cr as there are

functions in your basis! We will label the coefficients as:

c(i)
r where i (the upper label) refers to the MO and r (the lower label) refers to the site.

In nearly everything that we will do in this course, we will assume that the overlap matrix is

simply the identity matrix:

Srs =







1 r = s

0 otherwise
(19)
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On the face of it, this assumption is not easily defendable since the overlap between neigh-

bouring pz orbitals in benzene can be anywhere between 0.25 and 0.4. On the other hand, the

effect of including the proper overlap in qualitative terms turns out not to be very significant,

and since it simplifies life as regarding the solutions to the problem, we will proceed with it.

In this case, the Hückel secular equations substantially simplify:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H11 − ε H12 .... H1N

H21 H22 − ε .... H2N

.. .. .... ...

HN1 HN2 .... HNN − ε

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (20)

Before we proceed with other simplifications associated with Hückel theory, let us state some

properties of the MO’s:

Orthogonality:
∑

r

(c(i)
r )∗c(j)

r = 0 for i #= j. (21)

[Note the complex conjugation in the above. It will usually have no effect because we normally

work with real orbitals. On occasion, complex orbitals do arise, particularly in ring systems,

and then you to have to take care]. In addition, it is strongly recommended that you always

work with normalised orbitals:

Normalisation:
∑

r

|c(i)
r |2 = 1 (22)

This condition ensures that the probability to find your electron somewhere on one of the N

sites must be unity [why?]. Having computed MO’s according to some method you should

check to see if each one is indeed normalised. If not, then the coefficients should be replaced

by:

c(i)
r →

c(i)
r

(
∑

r |c
(i)
r |2)1/2

(23)

Normalisation will be essential for computing a number of properties later on, such as bond-

orders, atomic populations, etc. In a normalised MO ψi, with orthogonal AOs, the probability

to find an electron on site r is:

p(i)
r = |c(i)

r |2 (24)
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The Hückel assumptions

Now let us proceed by making certain assumptions which simplify actual calculations.

• We set all diagonal elements to be the same: Hii = α, irrespective of where the φi

occurs in the molecule. Clearly for benzene and other rings this is strictly true (not

an approximation), whereas in general it is not. We will later discuss what actual

numerical values α could be assigned (you will see experiment is not clear-cut on

this issue). Roughly speaking α measures the energy of the AO φ in the complete

framework of the molecule. It is often (somewhat misleadingly) called the Coulomb

integral, which is not correct since it also contains kinetic energy terms. In the limit of

the molecule being torn apart into its consitutent atoms, it is the energy of a p orbital.

Note, however, that in the molecule, it is not simply this energy, since the orbital also

sees the field due to the other nuclei (and electrons).

• We also set the off-diagonal elements between nearest-neighbour orbitals to be β, and

all others to be zero:

Hrs =







β r → s, i.e. if σ-bonded to each other

0 otherwise
(25)

Thus, at the end of all this we have, for benzene, the following ‘secular’ determinant to solve:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α− ε β 0 0 0 β

β α− ε β 0 0 0

0 β α− ε β 0 0

0 0 β α− ε β 0

0 0 0 β α− ε β

β 0 0 0 β α− ε

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (26)

You can see that we’ve eliminated a lot of elements, but we still appear to face a somewhat

daunting task of solving a 6×6 determinant. Actually we will see in another lecture how this

(and more generally, cyclic polyenes, and also linear chains) can be easily solved using some

nifty algebra, but for the moment we will appeal to another method which is more general

and which you’ve already had plenty of exposure at Part IB: using symmetry.
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II. USING SYMMETRY TO SIMPLIFY THE SOLUTION OF HÜCKEL

PROBLEMS

The point-group of the benzene molecule is D6h, and you will from last year’s experience

immediately be able to work out the irreducible representations spanned by the six pz orbitals:

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3 2S6 σh 3σd 3σv

Γpz 6 0 0 0 −2 0 0 0 0 −6 0 2
(27)

which can be reduced to

Γpz = B2g + E1g + A2u + E2u (28)

This means that we can setup 4 classes of symmetry adapted orbitals (which correspond to 4

irreducible representations of the D6h point group), 2 one-dimensional irreps (B2g and A2u)

and 2 two-dimensional irreps (E1g and E2u). In this basis (which we will shortly setup), the

Hamiltonian is in block-diagonal form:

E2u

E1g

A2u

B2g

FIG. 2: Block diagonal form of the benzene Hamiltonian

By inspection of character tables (or, more formally, using the projector operator), we can

write down the symmetry adapted orbitals:

φA2u =
1√
6

(φ1 + φ2 + φ3 + φ4 + φ5 + φ6)

φB2g =
1√
6

(φ1 − φ2 + φ3 − φ4 + φ5 − φ6)

φ(1)
E2u

=
1√
12

(2φ1 − φ2 − φ3 + 2φ4 − φ5 − φ6)

φ(2)
E2u

=
1

2
(φ2 − φ3 + φ5 − φ6)

φ(1)
E1g

=
1√
12

(2φ1 + φ2 − φ3 − 2φ4 − φ5 + φ6)

φ(2)
E1g

=
1

2
(φ2 + φ3 − φ5 − φ6)
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B2g

E2u E2u

E1g E1g

A2u

Note that these orbitals are orthonormal to each other, i.e. the scalar product between any

pair vanishes, whilst the norm of each orbital is unity. (Indeed the orthonormality condition

is a useful device to construct the second of a pair of orbitals in a 2d irrep such as E2u and

E1g). Since the 1d irreps A2u and B2g do not mix with other orbitals, and in this case they are

singletons, these symmetry-adapted orbitals are already also the molecular orbitals. Their

energy can be written down by inspection, using Eq.(6):

ψA2u = φA2u , εA2u = 〈ψA2u |H|ψA2u〉 = α+ 2β (29)

ψB2g = φB2g , εB2g = 〈ψB2g |H|ψB2g〉 = α− 2β (30)

For the E2u block, we can set up the 2 × 2 matrix by evaluating the matrix elements

〈φ(i)
E2u

|H|φ(j)
E2u

〉

HE2u =




α− β 0

0 α− β



 (31)

which is already diagonal, and leads to the two energy eigenvalues:

ψ(1)
E2u

= φ(1)
E2u

, ψ(2)
E2u

= φ(2)
E2u

, εE2u = α− β (2-fold degenerate) (32)

and similarly for the E1g block:

ψ(1)
E1g

= φ(1)
E1g

, ψ(2)
E1g

= φ(2)
E1g

, εE1g = α+ β (2-fold degenerate) (33)
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Irrep εi c1 c2 c3 c4 c5 c6 Normalisation Nodes

A2u α+ 2β 1 1 1 1 1 1 1√
6

0

E1g α+ β 2 1 −1 −2 −1 1 1√
12

2

E1g α+ β 0 1 1 0 −1 −1 1

2
2

E2u α− β 2 −1 −1 2 −1 −1 1√
12

4

E2u α− β 0 1 −1 0 −1 1 1

2
4

B2g α− 2β 1 −1 1 −1 1 −1 1√
6

6

Table I: Molecular orbitals of benzene

The results are summarised below in table I.

Given six π-electrons, which doubly occupy the three lowest energy levels, the total π-

energy is:

Eπ = 6α+ 8β (34)

leading to a delocalisation energy of:

Edelocalisation = Eπ − 3 × 2(α+ β)

= 2β

which is the amount the aromatic system is stabilised compared to a system of 3 isolated

π-bonds, which is what the corresponding Kekulé structure would lead one to predict.

Compared to hexatriene, the linear counterpart to benzene, the delocalisation energy of

benzene is much larger in magnitude. In fact, for hexatriene, one finds [Verify!]

Edelocalisation = 4β [cos(π/7) + cos(2π/7) + cos(3π/7)] − 6β

≈ 0.99β

In other words, the ring structure greatly stabilises the π-energy. Indeed this can be taken as

a rationalisation of the fact that aromatic systems tend to be stable, and undergo substitution

reactions, whereas linear chains tend to undergo addition reactions.

III. WHAT OF VALUES FOR β AND α?

Although we have stressed that many of the conclusions of Hückel theory are independent

of the numerical values of α and β (this is particularly true of the α parameter), it is nev-

9



ertheless interesting to ask what type of experimental result could be used to yield values.

One idea is to use experimental delocalisation energies, which are tabulated for the series

benzene, naphthalene, anthracene and phenanthrene (the “zig-zag” form of anthracene):

(a) (b)

(c)

FIG. 3: (a) Naphthalene, (b) Anthracene and (c)Phenanthrene

Two conclusions can be drawn from this. First, the close parallel between the Hückel the-

Molecule Theory Experiment Estimate of β

Benzene 2β 37 (kcal/mol) 18.5 (kcal/mol)

Naphthalene 3.68β 75 (kcal/mol) 20.4 (kcal/mol)

Anthracene 5.32β 105 (kcal/mol) 19.7 (kcal/mol)

Phenanthrene 5.45β 110 (kcal/mol) 20.2 (kcal/mol)

Table II: Delocalisation energies.

ory prediction on the variation of the delocalisation energy for the series, as compared to

experiment, which indicates that even such crude calculations are able to reproduce a sig-

nificant trend. Taking β to be about -20 kcal/mol leads to a reasonable agreement between

predicted and experimental delocalisation energies; thus naphthalene is about twice as ad-

ditionally stable compared to the Kekulé structures, as is benzene, and anthracene is about

three times as stable, etc. The second point regards the difference between anthracene and

phenanthrene, the latter being slightly more stable. Indeed, this trend continues for larger

systems: the annulation to give “zig-zag” forms are indeed experimentally more stable then

the corresponding linear ones (eg chrysene is more stable than tetracene). Thus our very

crude theory is able to give some interesting, semi-quantitative, results.
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Matters look less rosy if we consider a different type of measurement of β, using ionisation

potentials. Recall that the first ionisation potential is the minimum energy required to remove

an electron from a molecule, and therefore it is reasonable to suppose that the electron

removed comes from HOMO. Since, according to Hückel theory, the energy of an orbital can

be written in the form:

ε = α+ xβ

where x is suitable coefficient which depends on the molecule, one may suppose that if we

take a series of molecules (eg benzene, naphthalene, anthracene, etc), for which the x can

be calculated, and plot the ionisation energy as a function of x, then the slope of such a

(hopefully linear) curve would yield β, whereas the intercept would yield α. It turns out that

a least-squares fit yields:

Experimental ionisation energy = −163 + (−57 ± 3.9)x kcal/mol (35)

i.e. a value of β ≈ −57 kcal/mol, which is more than twice that value obtained from the

delocalisation energies. In fact this turns out to be a quite general feature of Hückel theory.

Experiments which depend on the energy of single orbitals turn out to yield values of β

which are always roughly a factor of two larger that those bases on total energies, in which

the energies of many orbitals are summed together.

The explanation for this behaviour can be found by considering the manner in which

electron-electron interactions are dealt with in the Hamiltonian H. Recall that the H is an

effective Hamiltonian in which an electron sees the average field due to all other electrons.

In other words, electron 1 sees a field due to the average of electrons 2, 3 , etc, and this field,

in addition to the field due to the nuclear framework, determines the energy eigenvalue of

electron 1. Similarly, electron 2 sees the average field of electron 1, electron 3, etc, and its

energy eigenvalue reflects these interactions as well. Therefore, if we add the energy eigenvalue

of electron 1 and electron 2, we have counted twice the average electrostatic interaction

between electron 1 and electron 2. This is exactly what is done in our method of calculating

the total π-energy: we simply add the energy of all occupied levels. On the other hand, if

we are dealing with purely the energy of a single energy level, there is no double counting.

Therefore, it should not be surprising that methods used to estimate β based on the total

energies yield values about 1/2 of that from ionisation potential experiments.
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IV. SOME SPECIAL SYSTEMS: LINEAR CHAINS AND RINGS OF ARBITRARY

LENGTH

In two general cases, it is possible to solve the Hückel equations to get the energy levels

and molecular orbital coefficients with little ado. Consider first a cyclic polyene (ring) of N

atomic sites. In such a ring, site r is connected to sites r + 1 and r − 1, with the boundary

1 2
3

i − 1
ii + 1

i + 2

N

FIG. 4: A cyclic polyene of length N

condition

c(n)
r = c(n)

N+r. (36)

In the above, n signifies the molecular orbital label. A row in the Hückel equations is:

(α− εn)c(n)
r + β(c(n)

r+1 + c(n)
r−1) = 0 (37)

Let us guess the following solution:

c(n)
r = ei2πnr/N (38)

(which, you should note, satisfies the boundary condition Eq.(36)), and insert into Eq.(37):

(α− εn)ei2πnr/N + β(ei2πn(r+1)/N + ei2πn(r−1)/N ) = 0 (39)

Notice that one can factorise ei2πnr/N and hence cancel this term, leaving an equation which

no longer involves the site r:

(α− εn) + β(ei2πn/N + e−i2πn)/N ) = 0 (40)

i.e.:

εn = α+ 2β cos(2πn/N) (41)
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α

α
2β

α+ 2β

α+ 2β

α− 2β

α− 2β

FIG. 5: The energy levels of the first few cyclic polyenes.

where n runs from 0,±1,±2..., N/2 for even-N or n = 0,±1,±2, ...,±(N − 1)/2 for odd-N .

There are always precisely N MO’s. Since the cos(x) is an even function, this implies that,

apart from n = 0 and n = N/2, the energy levels come in degenerate pairs. The energy levels

for the first few cyclic polyenes are be represented in Fig. 5.

This structure of the energy levels of the cyclic polyenes has an interesting consequence,

leading to the Hückel 4N +2 rule. Consider the sequence of cyclic polyenes with N = 3 to 7:

C3H3: In the neutral molecule, there are 3 π-electrons. However, owing to the energy level

pattern, the third electron occupies an anti-bonding orbital. Therefore, one would expect that

the cation C3H
+
3 to be more stable than the neutral species, and therefore that it should be

easy to remove an electron from the molecule.

C4H4. In this molecule, there are a two degenerate non-bonding orbitals, which in the

neutral species are partially occupied. According to Hund’s first rule, the expected electronic

configuration is a triplet state. However, this is the case to be expected only if the molecule is

indeed square planar. In fact a distortion of the molecular geometry can occur. As a result,

cyclobutadiene takes on a rectangular structure, in which the bonds alternate in length,

(long-short-long-short).
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replacemen

α

α+ 2β

α− 2β βl
βs

βl − βs

−βl + βs

FIG. 6: Distortion of the cyclobutadiene leads to two different β, and a consequent lifting of degeneracy

of the partially filled orbitals, which lowers the electronic energy.

A conjugated system with such alternating bond-lengths is characterised by two resonance

integrals |βl| < |βs|. In this case, the secular equations give rise to a different energy level

pattern. The degenerate non-bonding orbitals are lifted, and as a result, the lowering of

energy leads to a double occupancy of the HOMO, and hence a singlet state. Such a geometric

distortion leading to this effect is called a pseudo-Jahn-Teller or Renner distortion.

C5H5: In neutral cyclopentadiene, the highest occupied energy level (2-fold degenerate) is

a bonding orbital (ε1 = α + 0.618β) and is partially occupied with 3 electrons. These levels

are therefore able to accept a further electron with a consequent stabilisation. One would

expect, therefore, that the anion C5H
−
5 to exist, consisting of 6 π electrons.

C6H6. This case, benzene, has already been dealt with. All bonding orbitals are occupied

in the neutral molecule, and there are no non-bonding orbitals.

C7H7. In the neutral molecule, the highest occupied MO is an anti-bonding orbital, and

therefore this molecule can be expected to have a tendency to shed an electron, forming a

cation.

On the basis of these observations, would you expect the following molecule, azulene, to

exhibit a significant dipole moment, and if so, in which direction?

In order to obtain normalised MO’s, one must have:

∑

r

(c(n)
r )∗c(n)

r = 1 (42)
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FIG. 7: Azulene

Since, for Eq.(38),

(c(n)
r )∗c(n)

r = e−i2πnr/Nei2πnr/N = 1, (43)

we have:

c(n)
r =

1√
N

ei2πnr/N (44)

A mathematical aside: Notice that for degenerate pairs, the coefficients in Eq.(44) appear

different to those computed earlier for benzene, Eq.(32) and Eq.(33) for the E2u and E1g

states. Note, however, that in the latter representation, the coefficients of the orbitals can be

expressed as:

E2u : c(1)
r = cos(2πr/6), c(2)

r = sin(2πr/6) (45)

E1g : c(1)
r = cos(4πr/6), c(2)

r = sin(4πr/6) (46)

These coefficients are simply linear transformations of those in Eq.(44), via:

1

2
(ei2πnr/6 + e−i2πnr/6) = cos(2πnr/6), (47)

1

2i
(ei2πnr/6 − e−i2πnr/6) = sin(2πnr/6) (48)

Thus an alternative, purely real, representation of the orbitals of the cyclic polyenes are:

c(n)
r = Cn cos(2πnr/N), n = 0, 1, 2..., (N − 1)/2 (N odd )orN/2 (N even) (49)

s(n)
r = Sn sin(2πnr/N), n = 1, 2, ..., (N − 1)/2 (N odd )orN/2 (N even) (50)

Cn and Sn are normalisation factors which, unlike Eq.(44), must be computed separately for

each MO. Note also that for N even, the solution arising from N/2 is identical for both the

sine and cosine expressions, and should therefore only be counted once.

A. Linear polyene chains

A similar trick can be applied to the linear chain of N sites. In this case, we impose the

boundary conditions that the wavefunction must vanish beyond either end of the molecule,
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1

2

i − 1

i

i + 1

N − 1

N

FIG. 8: A linear polyene of length N

i.e. if the atomic sites are labelled 1,...,N , we set the coefficient of all molecular orbitals

“off-the-end” of the molecule to zero:

c(n)
0 = c(n)

N+1 = 0 (51)

The Hückel equations Eq.(37) must now be solved with these boundary conditions. Let us

guess the following solution:

c(n)
r = sin(nπr/(N + 1)) (52)

which satisfies the boundary conditions Eq.(51). Substitution into Eq.(37) gives:

(α− εn) sin(nπr/(N + 1)) + β(sin(nπ(r + 1)/(N + 1)) + sin(nπ(r − 1)/(N + 1))) = 0

Using:

sin(a ± b) = sin(a) cos(b) ∓ cos(a) sin(b)

we obtain:

(α− εn) sin(nπr/(N + 1)) + β(sin(nπr/(N + 1)) cos(πn/(N + 1))

+ sin(nπr/(N + 1)) cos(πn/(N + 1))) = 0

and hence:

(α− εn) + 2β(cos(πn/(N + 1))) = 0

i.e.

εn = α+ 2β cos(πn/(N + 1)) (53)

which is similar but not the same as the energy-level expression for the cyclic polyenes: The

linear chain does not have the doubly-degenerate levels characteristic of the cyclic system.
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FIG. 9: Comparison of the energy levels of cyclic and linear polyenes.

In addition, whereas the rings all have a deep bonding (and high anti-bonding) level at the

lowest (highest) possible energy ∓2β, the width of the linear chain band grows and reaches

4β only in the limit of an infinitely long chain.

Normalisation of the linear-chain coefficients leads to:

c(n)
r =

√

2

N + 1
sin(nπr/(N + 1)) (54)
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